3.8 Proceedings Paper

Theoretical modeling of a Localized Surface Plasmon Resonance (LSPR) based fiber optic temperature sensor

Journal

Publisher

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2059657

Keywords

LSPR; fiber sensor; temperature; nanoparticles; liquid crystal

Ask authors/readers for more resources

A localized surface plasmon resonance based fiber optic sensor for temperature sensing has been analyzed theoretically. The effects of the size of the spherical metal nanoparticle on the performance of the sensor have been studied in detail. The high sensitivity of localized surface plasmon resonances to refraction index changes, in collaboration with the high thermo-optic coefficients of Liquid Crystal materials, has result in a fiber optical sensor with high temperature sensitivity. This sensitivity has been demonstrated to be dependent on nanoparticle size. Maximum sensitivities of 4nm/degrees C can be obtained for some specific temperature ranges. The proposed sensor will be low cost, and will have all the typical advantages of fiber optic sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available