4.7 Article

Intermetallic Ni2 Ta Electrocatalyst for the Oxygen Evolution Reaction in Highly Acidic Electrolytes

Journal

INORGANIC CHEMISTRY
Volume 57, Issue 10, Pages 6010-6015

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b00503

Keywords

-

Funding

  1. U.S. National Science Foundation Center for Chemical Innovation in Solar Fuels [CHE-1305124]
  2. American Chemical Society Petroleum Research Fund [54898-DNI10]

Ask authors/readers for more resources

The identification of materials capable of catalyzing the oxygen evolution reaction (OER) in highly acidic electrolytes is a critical bottleneck in the development of many water-splitting technologies. Bulk-scale solid-state compounds can be readily produced using high-temperature reactions and therefore used to expand the scope of earth-abundant OER catalysts capable of operating under strongly acidic conditions. Here, we show that high temperature arc melting and powder metallurgy reactions can be used to synthesize electrodes consisting of intermetallic Ni2Ta that can catalyze the OER in 0.50 M H2SO4. Arc melted Ni2Ta electrodes evolve oxygen at a current density of 10 mA/cm(2) for >66 h with corrosion rates 2 orders of magnitude lower than that of pure Ni. The overpotential required for pellets of polycrystalline Ni2Ta to produce a current density of 10 mA/cm(2) is 570 mV. This strategy can be generalized to include other first-row transition metals, including intermetallic Fe2Ta and Co2Ta systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available