4.7 Article

Magnetic Metal-Organic Framework Composite by Fast and Facile Mechanochemical Process

Journal

INORGANIC CHEMISTRY
Volume 57, Issue 4, Pages 1806-1814

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.7b02697

Keywords

-

Ask authors/readers for more resources

Magnetic porous metal organic framework nano composite was obtained by an easy, efficient, and environmentally friendly fabrication method. The material consists in magnetic spinel iron oxide nanoparticles incorporated in an iron(III) carboxylate framework. The magnetic composite was fabricated by a multistep mechanochemical approach. In the first step, iron oxide nanoparticles were obtained via ball milling inducing mechanochemical reaction between iron chlorides and NaOH using NaCl as dispersing agent. Magnetic nanoparticles (MNs) were functionalized by neat grinding with benzene-1,3,5-tricarboxylic acid (1, 3, 5 BTC) and were then subjected to liquid assisted milling using hydrated FeCl3, water, and ethanol to obtain a magnetic framework composite (MFC) consisting of iron oxide nanoparticles encapsulated in a MOF matrix. We report, for the first time, the applicability of the grinding method to obtain a magnetic composite of metal-organic frameworks. The synthesized material exhibits magnetic characteristics and high porosity, and it has been tested as carrier for targeted drug delivery studying loading and release of a model drug (doxorubicin). Developed systems can associate therapeutics and diagnostics properties with possible relevant. impact for theranostic and personalized patient treatment. Furthermore, the material properties make them excellent candidates for several other applications such as catalysis, sensing, and selective sequestration processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available