4.7 Article

Exploiting GPU and cluster parallelism in single scan frequent itemset mining

Journal

INFORMATION SCIENCES
Volume 496, Issue -, Pages 363-377

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2018.07.020

Keywords

Frequent itemset mining; High-performance computing; Support computing; Big data; GPU

Ask authors/readers for more resources

This paper considers discovering frequent itemsets in transactional databases and addresses the time complexity problem by using high performance computing (HPC). Three HPC versions of the Single Scan (SS) algorithm are proposed. The first one (GSS) implements SS on a GPU (Graphics Processing Unit) architecture using an efficient mapping between thread blocks and the input data. The second approach (CSS) implements SS on a cluster architecture by scheduling independent jobs to workers in a cluster. The third, (CGSS) accelerates the frequent itemset mining process by using multiple cluster nodes equipped with GPUs. Moreover, three partitioning strategies are proposed to reduce GPU thread divergence and cluster load imbalance. Results show that CGSS outperforms SS, GSS, and CSS in terms of speedup. Specifically, CGSS provides up to a 350 times speedup for low minimum support values on large datasets. GCSS demonstrably outperforms the state-of-the-art HPC-based algorithms on big databases. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available