4.6 Article

Investigation of Void Fraction Schemes for Use with CFD-DEM Simulations of Fluidized Beds

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 57, Issue 8, Pages 3002-3013

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.7b04638

Keywords

-

Funding

  1. UC Doctoral Scholarship

Ask authors/readers for more resources

This paper investigates the spatial resolution of computational fluid dynamics-discrete element method (CFD-DEM) simulations of a bubbling fluidized bed for seven different void fraction schemes. Fluid grids with cell sizes of 3.5, 1.6, and 1.3 particle diameters were compared. The particle velocity maps from all of the void fraction schemes were in good qualitative agreement with the experimental data collected using magnetic resonance imaging (MRI). Refining the fluid grid improved the quantitative agreement due to a more accurate representation of flow near the gas distributor. The approach proposed by Khawaja et al. [J. Comput. Multiphase Flows 2012, 4, 183-192] provided the closest match to the exact void fraction though only the particle centered method differed significantly. These results indicate that the fluid grid used for CFD-DEM simulations must be sufficiently fine to represent the inlet flow realistically and that a void fraction scheme such as that proposed by Khawaja be used.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available