4.5 Review

Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer

Journal

IMMUNOLOGY LETTERS
Volume 193, Issue -, Pages 25-34

Publisher

ELSEVIER
DOI: 10.1016/j.imlet.2017.11.006

Keywords

Calreticulin; Immunogenic cell death; ER stress response; Prognosis; Cancer

Categories

Funding

  1. Ministry of Health, Czech Republic Conceptual Development of Research Organization (University Hospital Motol, Prague) [00064203]
  2. Ministry of Education, Youth and Sports, Czech Republic [CZ.02.1.01/0.0/0.0/16_013/0001674]

Ask authors/readers for more resources

The death of cancer cells can be categorized as either immunogenic (ICD) or nonimmunogenic, depending on the initiating stimulus. The immunogenic processes of immunogenic cell death are mainly mediated by damage associated molecular patterns (DAMPs), which include surface exposure of calreticulin (CRT), secretion of adenosine triphosphate (ATP), release of non-histone chromatin protein high-mobility group box 1 (HMGB1) and the production of type I interferons (IFNs). DAMPs are recognized by various receptors that are expressed by antigen-presenting cells (APCs) and potentiate the presentation of tumor antigens to T lymphocytes. Accumulating evidence indicates that CRT exposure constitutes one of the major checkpoints, that determines the immunogenicity of cell death both in vitro and in vivo in mouse models. Moreover, recent studies have identified CRT expression on tumor cells not only as a marker of ICD and active anti-tumor immune reactions but also as a major predictor of a better prognosis in various cancers. Here, we discuss the recent information on the CRT capacity to activate anticancer immune response as well as its prognostic and predictive role for the clinical outcome in cancer patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available