4.8 Article

MicroRNA 29 Targets Nuclear Factor-κB-Repressing Factor and Claudin 1 to Increase Intestinal Permeability

Journal

GASTROENTEROLOGY
Volume 148, Issue 1, Pages 158-U611

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2014.09.037

Keywords

Gene Regulation; mRNA Processing; Intestinal Barrier Function; Mouse Model

Funding

  1. National Institutes of Health from National Institute of Diabetes and Digestive and Kidney Diseases [DK099052]
  2. National Center for Complementary and Alternative Medicine [AT005291]
  3. Department of Veteran Affairs

Ask authors/readers for more resources

BACKGROUND & AIMS: Some patients with irritable bowel syndrome with diarrhea (IBS-D) have intestinal hyperpermeability, which contributes to their diarrhea and abdominal pain. MicroRNA 29 (MIR29) regulates intestinal permeability in patients with IBS-D. We investigated and searched for targets of MIR29 and investigated the effects of disrupting Mir29 in mice. METHODS: We investigated expression MIR29A and B in intestinal biopsies collected during endoscopy from patients with IBS (n = 183) and without IBS (controls) (n = 36). Levels were correlated with disease phenotype. We also generated and studied Mir29(-/-) mice, in which expression of Mir29a and b, but not c, is lost. Colitis was induced by administration of 2,4,6-trinitrobenzenesulfonic acid; intestinal tissues were collected and permeability was assessed. Microarray analysis was performed using tissues from Mir29(-/-) mice. Changes in levels of target genes were measured in human colonic epithelial cells and small intestinal epithelial cells after knockdown of MIR29 with anti-MIRs. RESULTS: Intestinal tissues from patients with IBS-D (but not IBS with constipation or controls) had increased levels of MIR29A and B, but reduced levels of Claudin-1 (CLDN1) and nuclear factor-kappa B-repressing factor (NKRF). Induction of colitis and water avoidance stress increased levels of Mir29a and Mir29b and intestinal permeability in wild-type mice; these increased intestinal permeability in colons of far fewer Mir29(-/-) mice. In microarray and knockdown experiments, MIR29A and B were found to reduce levels of NKRF and CLDN1 messenger RNA, and alter levels of other messenger RNAs that regulate intestinal permeability. CONCLUSIONS: Based on experiments in knockout mice and analyses of intestinal tissue samples from patients with IBS-D, MIR29 targets and reduces expression of CLDN1 and NKRF to increase intestinal permeability. Strategies to block MIR29 might be developed to restore intestinal permeability in patients with IBS-D.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available