4.6 Article

Commutation Failure Elimination of LCC HVDC Systems Using Thyristor-Based Controllable Capacitors

Journal

IEEE TRANSACTIONS ON POWER DELIVERY
Volume 33, Issue 3, Pages 1448-1458

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRD.2017.2776867

Keywords

Commutation failure; HVDC transmission; HVDC converter; LCC HVDC; thyristor-based controllable capacitor (TBCC); UHVDC

Funding

  1. EPSRC [EP/L017725/1, EP/N032888/1]
  2. EPSRC [EP/N032888/1, EP/L017725/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/N032888/1, EP/L017725/1] Funding Source: researchfish

Ask authors/readers for more resources

The adverse impacts of commutation failure (CF) of a line-commutated converter (LCC)-based high-voltage direct current (HVdc) system on the connected ac system are becoming more serious for high-power ratings, for example, the development of ultra-HVdc systems. Aiming to solve the problem of CF particularly for higher power/current LCC HVdc systems, this paper proposes a new method, which utilizes a thyristor-based controllable capacitor (TBCC), to eliminate CFs. The topology of the proposed TBCCLCCHVdc and its operating principles are presented. Then, mathematical analysis is carried out for the selection of component parameters. To validate the performance of the proposed method, modified LCC-HVdc and capacitor-commutated converter (CCC)-based HVdc systems based on the modified CIGRE HVdc system are modeled in a real-time digital simulator. Simulation studies for zero impedance single-phase and three-phase faults are carried out, and comparisons are made with both LCC-HVdc and CCC-HVdc systems. Furthermore, voltage and current stress of the TBCC are investigated and power-loss calculations are presented. The results show that the proposed method is able to achieve CF elimination under the most serious faults while the increase of power losses due to the TBCC is small.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available