4.8 Article

Gaussian Process Morphable Models

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2017.2739743

Keywords

Statistical shape modeling; Gaussian processes; image analysis; non-rigid registration

Funding

  1. Swiss National Science foundation [SNF153297]

Ask authors/readers for more resources

Models of shape variations have become a central component for the automated analysis of images. An important class of shape models are point distribution models (PDMs). These models represent a class of shapes as a normal distribution of point variations, whose parameters are estimated from example shapes. Principal component analysis (PCA) is applied to obtain a low-dimensional representation of the shape variation in terms of the leading principal components. In this paper, we propose a generalization of PDMs, which we refer to as Gaussian Process Morphable Models (GPMMs). We model the shape variations with a Gaussian process, which we represent using the leading components of its Karhunen-Loeve expansion. To compute the expansion, we make use of an approximation scheme based on the Nystrom method. The resulting model can be seen as a continuous analog of a standard PDM. However, while for PDMs the shape variation is restricted to the linear span of the example data, with GPMMs we can define the shape variation using any Gaussian process. For example, we can build shape models that correspond to classical spline models and thus do not require any example data. Furthermore, Gaussian processes make it possible to combine different models. For example, a PDM can be extended with a spline model, to obtain a model that incorporates learned shape characteristics but is flexible enough to explain shapes that cannot be represented by the PDM. We introduce a simple algorithm for fitting a GPMM to a surface or image. This results in a non-rigid registration approach whose regularization properties are defined by a GPMM. We show how we can obtain different registration schemes, including methods for multi-scale or hybrid registration, by constructing an appropriate GPMM. As our approach strictly separates modeling from the fitting process, this is all achieved without changes to the fitting algorithm. To demonstrate the applicability and versatility of GPMMs, we perform a set of experiments in typical usage scenarios in medical image analysis and computer vision: The model-based segmentation of 3D forearm images and the building of a statistical model of the face. To complement the paper, we have made all our methods available as open source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available