4.8 Article

Binary Multi-View Clustering

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2018.2847335

Keywords

Large-scale clustering; multi-view data; efficient; short binary code; discrete representation

Funding

  1. Nature Science Foundation of China [61502081, 61702117, 61632007]
  2. Science and Technology Program of Guangzhou [201804010355]

Ask authors/readers for more resources

Clustering is a long-standing important research problem, however, remains challenging when handling large-scale image data from diverse sources. In this paper, we present a novel Binary Multi-View Clustering (BMVC) framework, which can dexterously manipulate multi-view image data and easily scale to large data. To achieve this goal, we formulate BMVC by two key components: compact collaborative discrete representation learning and binary clustering structure learning, in a joint learning framework. Specifically, BMVC collaboratively encodes the multi-view image descriptors into a compact common binary code space by considering their complementary information; the collaborative binary representations are meanwhile clustered by a binary matrix factorization model, such t hat the cluster structures are optimized in the Hamming space by pure, extremely fast bit-operations. For efficiency, the code balance constraints are imposed on both binary data representations and cluster centroids. Finally, the resulting optimization problem is solved by an alternating optimization scheme with guaranteed fast convergence. Extensive experiments on four large-scale multi-view image datasets demonstrate that the proposed method enjoys the significant reduction in both computation and memory footprint, while observing superior (in most cases) or very competitive performance, in comparison with state-of-the-art clustering methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available