3.8 Article

Substrate stiffness effect and chromosome missegregation in hIPS cells

Journal

Publisher

BMC
DOI: 10.1186/s12952-015-0042-8

Keywords

Induced pluripotent stem cells; Chromosome missegregation; Mitosis; Substrate stiffness

Funding

  1. National Institutes of Health Grant from the Heart, Blood and Lung Institute [K18 HL105504]
  2. Graduate School of the University of Wisconsin-Madison
  3. Graduate Engineering Research Scholars program of the University of Wisconsin-Madison
  4. National Science Foundation Graduate Research Fellowship Program [DGE-1256259]

Ask authors/readers for more resources

Background: Ensuring genetic stability in pluripotent stem cell (PSC) cultures is essential for the development of successful cell therapies. Although most instances lead to failed experiments and go unreported in the literature, many laboratories have found the emergence of genetic abnormalities in PSCs when cultured in vitro for prolonged amounts of time. These cells are primarily cultured in non-physiological stiff substrates like tissue culture polystyrene (TCPS) which raises the possibility that the cause of these abnormalities may be influenced by substrate mechanics. Findings: In order to investigate this, human PSCs were grown on substrates of varying stiffness such as a range of polyacrylamide formulations, TCPS, and borosilicate glass coverslips. These substrates allowed for the testing of a stiffness range from 5kPa to 64GPa. Two human induced PSC (iPSC) lines were analyzed in this study: 19-9-11 iPSCs and 19.7 clone F iPSCs. Centrosome and DNA staining revealed that 19-9-11 iPSCs range from 1-8.5 % abnormal mitoses under the different culture conditions. A range of 4.4-8.1 % abnormal mitoses was found for 19.7 clone F iPSCs. Conclusions: Abnormal cell division was not biased towards one particular substrate. It was confirmed by Analysis of Variance (ANOVA) and Tukey's Honest Significant Difference test that there was no statistically significant difference between passage numbers, cell lines, or substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available