4.7 Article

Personal PIN Leakage from Wearable Devices

Journal

IEEE TRANSACTIONS ON MOBILE COMPUTING
Volume 17, Issue 3, Pages 646-660

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TMC.2017.2737533

Keywords

Privacy leakage; wearable devices; leakage of PIN; hand movement trajectory recovery; PIN sequence inference

Funding

  1. US National Science Foundation [CNS0954020, CNS1514436, SES1450091]
  2. Army Research Office [W911NF-13-1-0288]

Ask authors/readers for more resources

The proliferation of wearable devices, e.g., smartwatches and activity trackers, with embedded sensors has already shown its great potential on monitoring and inferring human daily activities. This paper reveals a serious security breach of wearable devices in the context of divulging secret information (i.e., key entries) while people are accessing key-based security systems. Existing methods of obtaining such secret information rely on installations of dedicated hardware (e.g., video camera or fake keypad), or training with labeled data from body sensors, which restrict use cases in practical adversary scenarios. In this work, we show that a wearable device can be exploited to discriminate mm-level distances and directions of the user's fine-grained hand movements, which enable attackers to reproduce the trajectories of the user's hand and further to recover the secret key entries. In particular, our systemconfirms the possibility of using embedded sensors in wearable devices, i.e., accelerometers, gyroscopes, and magnetometers, to derive the moving distance of the user's hand between consecutive key entries regardless of the pose of the hand. Our Backward PIN-Sequence Inference algorithm exploits the inherent physical constraints between key entries to infer the complete user key entry sequence. Extensive experiments are conducted with over 7,000 key entry traces collected from 20 adults for key-based security systems (i.e., ATM keypads and regular keyboards) through testing on different kinds of wearables. Results demonstrate that such a technique can achieve 80 percent accuracy with only one try and more than 90 percent accuracy with three tries. Moreover, the performance of our systemis consistently good even under low sampling rate and when inferring long PIN sequences. To the best of our knowledge, this is the first technique that reveals personal PINs leveraging wearable devices without the need for labeled training data and contextual information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available