4.6 Article

Analytical Determination of Participation in Superconducting Coplanar Architectures

Journal

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
Volume 66, Issue 8, Pages 3724-3733

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMTT.2018.2841829

Keywords

Conformal mapping; coplanar waveguides; electromagnetic simulation; planar structures; quantum devices

Ask authors/readers for more resources

Superconducting qubits are sensitive to a variety of loss mechanisms, which include dielectric loss from interfaces. The calculation of participation near the key interfaces of planar designs can be accomplished through an analytical description of the electric field density based on conformal mapping. In this way, a 2-D approximation to coplanar waveguide and capacitor designs produces values of the participation as a function of depth from the top metallization layer as well as the volume participation within a given thickness from this surface by reducing the problem to a surface integration over the region of interest. These quantities are compared to finite-element method numerical solutions, which validate the values at large distances from the coplanar metallization but diverge near the edges of the metallization features due to the singular nature of the electric fields. A simple approximation to the electric field energy at shallow depths (relative to the waveguide width) is also presented that closely replicates the numerical results based on conformal mapping and those reported in prior literature. These techniques are applied to the calculation of surface participation within a transmon qubit design, where the effects due to shunting capacitors can be easily integrated with those associated with metallization comprising the local environment of the qubit junction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available