3.8 Proceedings Paper

Semantically Secure Order-Revealing Encryption: Multi-input Functional Encryption Without Obfuscation

Journal

ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015, PT II
Volume 9057, Issue -, Pages 563-594

Publisher

SPRINGER-VERLAG BERLIN
DOI: 10.1007/978-3-662-46803-6_19

Keywords

-

Ask authors/readers for more resources

Deciding greater-than relations among data items just given their encryptions is at the heart of search algorithms on encrypted data, most notably, non-interactive binary search on encrypted data. Order-preserving encryption provides one solution, but provably provides only limited security guarantees. Two-input functional encryption is another approach, but requires the full power of obfuscation machinery and is currently not implementable. We construct the first implementable encryption system supporting greater-than comparisons on encrypted data that provides the best-possible semantic security. In our scheme there is a public algorithm that given two ciphertexts as input, reveals the order of the corresponding plaintexts and nothing else. Our constructions are inspired by obfuscation techniques, but do not use obfuscation. For example, to compare two 16-bit encrypted values (e.g., salaries or age) we only need a 9-way multilinear map. More generally, comparing k-bit values requires only a (k/2 + 1)-way multilinear map. The required degree of multilinearity can be further reduced, but at the cost of increasing ciphertext size. Beyond comparisons, our results give an implementable secret-key multi-input functional encryption scheme for functionalities that can be expressed as (generalized) branching programs of polynomial length and width. Comparisons are a special case of this class, where for k-bit inputs the branching program is of length k + 1 and width 4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available