4.7 Article

Measurement and characterization of porosity in aluminium selective laser melting parts using X-ray CT

Journal

VIRTUAL AND PHYSICAL PROTOTYPING
Volume 10, Issue 4, Pages 195-206

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17452759.2015.1112412

Keywords

Rapid prototyping; measurement; laser scanning

Ask authors/readers for more resources

Selective laser melting (SLM) is an additive manufacturing technique which has the capability to produce complex metal parts with almost 100% density and good mechanical properties. Despite the potential benefits of SLM technology, there are technical challenges relating to the qualification and certification of the manufactured parts that limits its application in safetycritical industries, such as aerospace. Material porosity in SLM parts is detrimental for aerospace applications since it compromises structural integrity and could result in premature structural failure of parts. This paper describes the application of the non-destructive X-ray computed tomography (XCT) method to characterize the internal structure to enhance the understanding of the process parameters on material porosity and thus provide quality control of the SLM AlSi10Mg parts. An efficient and reliable XCT image processing procedure that involves image enhancement and ring artefact removal prior to image segmentation is presented. The obtained porosity level is compared with the conventional Archimedes method, showing good agreement. The characteristics of pores, such as shapes and sizes, are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available