4.7 Article

Attributed Social Network Embedding

Journal

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
Volume 30, Issue 12, Pages 2257-2270

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TKDE.2018.2819980

Keywords

Social network representation; homophily; deep learning

Funding

  1. National Research Foundation, Prime Ministers Office, Singapore under its IRC@Singapore

Ask authors/readers for more resources

Embedding network data into a low-dimensional vector space has shown promising performance for many real-world applications, such as node classification and entity retrieval. However, most existing methods focused only on leveraging network structure. For social networks, besides the network structure, there also exists rich information about social actors, such as user profiles of friendship networks and textual content of citation networks. These rich attribute information of social actors reveal the homophily effect, exerting huge impacts on the formation of social networks. In this paper, we explore the rich evidence source of attributes in social networks to improve network embedding. We propose a generic Attributed Social Network Embedding framework (ASNE), which learns representations for social actors (i.e., nodes) by preserving both the structural proximity and attribute proximity. While the structural proximity captures the global network structure, the attribute proximity accounts for the homophily effect. To justify our proposal, we conduct extensive experiments on four real-world social networks. Compared to the state-of-the-art network embedding approaches, ASNE can learn more informative representations, achieving substantial gains on the tasks of link prediction and node classification. Specifically, ASNE significantly outperforms node2vec with an 8.2 percent relative improvement on the link prediction task, and a 12.7 percent gain on the node classification task.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available