4.7 Article

Real-Time Traffic Flow Parameter Estimation From UAV Video Based on Ensemble Classifier and Optical Flow

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2018.2797697

Keywords

Convolutional neural network; ensemble classifier; Haar cascade; optical flow; UAV video; traffic flow parameter

Funding

  1. NSF China [51329801]
  2. Shenzhen Science and Technology Planning Project [GJHZ20150316154158400]

Ask authors/readers for more resources

Recently, the availability of unmanned aerial vehicle (UAV) opens up new opportunities for smart transportation applications, such as automatic traffic data collection. In such a trend, detecting vehicles and extracting traffic parameters from UAV video in a fast and accurate manner is becoming crucial in many prospective applications. However, from the methodological perspective, several limitations have to be addressed before the actual implementation of UAV. This paper proposes a new and complete analysis framework for traffic flow parameter estimation from UAV video. This framework addresses the well-concerned issues on UAV's irregular ego-motion, low estimation accuracy in dense traffic situation, and high computational complexity by designing and integrating four stages. In the first two stages an ensemble classifier (Haar cascade + convolutional neural network) is developed for vehicle detection, and in the last two stages a robust traffic flow parameter estimation method is developed based on optical flow and traffic flow theory. The proposed ensemble classifier is demonstrated to outperform the state-of-the-art vehicle detectors that designed for UAV-based vehicle detection. Traffic flow parameter estimations in both free flow and congested traffic conditions are evaluated, and the results turn out to be very encouraging. The dataset with 20,000 image samples used in this study is publicly accessible for benchmarking at http://www.uwstarlab.org/research.html.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available