4.7 Article

Quartz-Crystal Microbalance Gas Sensors Based on TiO2 Nanoparticles

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIM.2017.2785118

Keywords

Gas sensor; humidity sensor; nanomaterials; quartz-crystal microbalance (QCM); sensor model

Ask authors/readers for more resources

Quartz-crystal microbalance (QCM) sensors obtained by a facile deposition of TiO2 nanoparticles have been manufactured and tested. Their gas sensing performance is discussed from a theoretical point of view and then verified by means of ad hoc measurement systems, through experiments with two toxic gases, CO and NO2, and water vapor. The influence of UV irradiation on the sensor response has also been studied. Results show stable and repeatable responses, characterized by a very high sensitivity to water vapor, a good sensitivity to NO2, and only a fairly low response to CO. Both CO and NO2 responses depend strongly on the relative humidity (RH). So, NO2 sensing should be performed in a controlled humidity environment. Devices proved to be reliable detectors of low RH values. Advantages as low cost, facile preparation, RT operation, good stability, and high/moderate sensitivity, make these devices attractive as an alternative to mostly used gas sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available