4.7 Article

A Force Myography-Based System for Gait Event Detection in Overground and Ramp Walking

Journal

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
Volume 67, Issue 10, Pages 2314-2323

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIM.2018.2816799

Keywords

Force myography (FMG); gait cycle; heel strike (HS); locomotion; toe-off (TO); transitions

Funding

  1. Indian council of Medical Research [5/20/13/Bio/2011-NCD-I]
  2. Department of Science and Technology, Government of India through Early Career Research Award

Ask authors/readers for more resources

In this paper, we present a novel method to determine the heel strike (HS) and toe-off (TO) during overground (OG) and ramp walking, including the transition. The method utilizes force myography (FMG) signals from thighs while subjects walked on OG and ramp. Five adult male subjects wore a wireless FMG data acquisition system, developed in-house using force resistive sensors and electronic components. A heuristic approach for subject-dependent and terrain-independent model was developed to determine HS and TO in a given gait cycle in steady state and transition. The average error in HS determination was 9.66 +/- 8.29, 938 +/- 9.35, and 13.94 +/- 18.95 ms, while TO was determined with an average error of 16.99 +/- 18.12, 13.35 +/- 15.10, and 17.29 +/- 21.92 ms for OG, ramp, and transition, respectively. The proposed system is less expensive, simple to develop, and friendly to wear. The reported errors are comparable to previously reported errors using pressure sensitive insole, gyroscope, accelerometers, and electromyography, which are much complex and expensive in comparison to proposed FMG-based system. Although the tests were conducted on healthy subjects, the system promises to be generalizable to amputee and other pathological gaits also. While the tests were conducted on young adults at self-selected speeds, the system also promises to be generalizable for a wide range of walking speeds across the population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available