4.7 Article

A Light CNN for Deep Face Representation With Noisy Labels

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIFS.2018.2833032

Keywords

Convolutional neural network; face recognition

Funding

  1. State Key Development Program [2016YFB1001001]
  2. National Natural Science Foundation of China [61622310, 61427811]

Ask authors/readers for more resources

The volume of convolutional neural network (CNN) models proposed for face recognition has been continuously growing larger to better fit the large amount of training data. When training data are obtained from the Internet, the labels are likely to be ambiguous and inaccurate. This paper presents a Light CNN framework to learn a compact embedding on the large-scale face data with massive noisy labels. First, we introduce a variation of maxout activation, called max-feature-map (MFM), into each convolutional layer of CNN. Different from maxout activation that uses many feature maps to linearly approximate an arbitrary convex activation function, MFM does so via a competitive relationship. MFM can not only separate noisy and informative signals but also play the role of feature selection between two feature maps. Second, three networks are carefully designed to obtain better performance, meanwhile, reducing the number of parameters and computational costs. Finally, a semantic bootstrapping method is proposed to make the prediction of the networks more consistent with noisy labels. Experimental results show that the proposed framework can utilize large-scale noisy data to learn a Light model that is efficient in computational costs and storage spaces. The learned single network with a 256-D representation achieves state-of-theart results on various face benchmarks without fine-tuning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available