4.6 Review

Face washing promotion for preventing active trachoma

Journal

Publisher

WILEY
DOI: 10.1002/14651858.CD003659.pub4

Keywords

Face; Anti-Bacterial Agents [administration & dosage]; Baths [methods]; Chlamydia trachomatis; Ophthalmic Solutions [therapeutic use]; Randomized Controlled Trials as Topic; Skin Care [methods]; Tetracycline [administration & dosage]; Trachoma [epidemiology; prevention & control]; Adolescent; Child; Child; Preschool; Humans; Infant

Funding

  1. Effective Health Care Alliance Programme, International Health Division, Liverpool School of Tropical Medicine, UK.
  2. National Eye Centre, Nigeria
  3. National Eye Institute, National Institutes of Health, USA
  4. Cochrane Eyes and Vision - US Project through the National Eye Institute [1 U01 EY020522]
  5. National Institute for Health Research (NIHR), UK.
  6. Department of Health through the National Institute for Health Research to Moorfields Eye Hospital NHS Foundation Trust
  7. UCL Institute of Ophthalmology for a Specialist Biomedical Research Centre for Ophthalmology
  8. NIHR

Ask authors/readers for more resources

Background Trachoma remains a major cause of avoidable blindness among underprivileged populations in many developing countries. It is estimated that about 146 million people have active trachoma and nearly six million people are blind due to complications associated with repeat infections. Objectives The objective of this review was to assess the effects of face washing promotion for the prevention of active trachoma in endemic communities. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 1), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to January 2015), EMBASE (January 1980 to January 2015), PubMed (January 1948 to January 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to January 2015), the metaRegister of Controlled Trials (mRCT) ( www.controlled-trials.com) (accessed 10 January 2014), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 26 January 2015. To identify further relevant trials we checked the reference lists of the included trials. Also, we used the Science Citation Index to search for references to publications that cited the trials included in the review. We contacted investigators and experts in the field to identify additional trials. Selection criteria We included randomized controlled trials (RCTs) or quasi-RCTs that compared face washing with no treatment or face washing combined with antibiotics against antibiotics alone. Trial participants were residents of endemic trachoma communities. Data collection and analysis Two review authors independently extracted data and assessed trial quality. We contacted trial authors for additional information when needed. Two trials met our inclusion criteria; but we did not conduct meta-analysis due to methodological heterogeneity. Main results We included two cluster-RCTs, which provided data from 2447 participants. Both trials were conducted in areas endemic to trachoma: Northern Australia and Tanzania. The follow-up period was three months in one trial and 12 months in the other; both trials had about 90% participant follow-up at final visit. Overall the quality of the evidence is uncertain due to the trials not reporting many design methods and the differences in outcomes reported between trials. Face washing combined with topical tetracycline was compared with topical tetracycline alone in three pairs of villages in one trial. The trial found that face washing combined with topical tetracycline reduced 'severe' active trachoma compared with topical tetracycline alone at 12 months (adjusted odds ratio (OR) 0.62, 95% confidence interval (CI) 0.40 to 0.97); however, the trial did not find any important difference between the intervention and control villages in reducing other types of active trachoma (adjusted OR 0.81, 95% CI 0.42 to 1.59). Intervention villages had a higher prevalence of clean faces than the control villages among children with severe trachoma (adjusted OR 0.35, 95% CI 0.21 to 0.59) and any trachoma (adjusted OR 0.58, 95% CI 0.47 to 0.72) at 12 months follow-up. The second trial compared eye washing to no treatment or to topical tetracycline alone or to a combination of eye washing and tetracycline drops in children with follicular trachoma. At three months, the trial found no evidence of benefit of eye washing alone or in combination with tetracycline eye drops in reducing follicular trachoma amongst children with follicular trachoma (risk ratio (RR) 1.03, 95% CI 0.96 to 1.11; one trial, 1143 participants). Authors' conclusions There is evidence from one trial that face washing combined with topical tetracyclinemay be effective in reducing severe active trachoma and in increasing the prevalence of clean faces at one year follow-up. Current evidence is inconclusive as to the effectiveness of face washing alone or in combination with topical tetracycline in reducing active or severe trachoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available