3.8 Proceedings Paper

High capacity factor CSP-PV hybrid systems

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.egypro.2015.03.218

Keywords

CSP-PV Hybrid; High Capacity Factor; Smart Dispatch

Categories

Ask authors/readers for more resources

Tower concentrating systems with direct molten salt heat transfer and storage can deploy particularly inexpensive and scalable thermal storage, enabling cost-effective 24-hour generation using only solar energy. While typical capacity factors (CFs) for intermittent renewables are generally between 20% and 40%, the SolarReserve Crescent Dunes project will offer above 50%. This paper discusses how SolarReserve's CSP technology can cost-effectively produce a CF over 80%, and when hybridized with PV, can raise the CF further to roughly 90%. A detailed operational model of a hybrid system in Chile's Atacama Desert was produced, using localized data on weather and interconnection capacity, to illustrate this capability. Analysis of high CF CSP-PV hybrids leads to three important conclusions. First, it was found that effective configuration of high CF systems supported selection of fixed-tilt PV at a high angle, which is optimized for winter generation in order to minimize seasonal differences. Second, when a dispatch strategy was developed which incorporated multiple priority levels and which dispatched CSP in response to PV output, it enabled higher CF CSP-PV hybrid operations than the CSP accomplished alone. Third, it was found that average annual DNI was not a sufficient metric of solar resource, and that seasonal variability and consolidation of non-optimal days were also important to high CF designs. New metrics for solar resource measurement are proposed and discussed. (C) 2015 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available