4.6 Article

Fault Propagation Analysis by Implementing Nearest Neighbors Method Using Process Connectivity

Journal

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY
Volume 27, Issue 5, Pages 2058-2067

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2018.2847651

Keywords

Causality; fault propagation; nearest neighbors; process connectivity; time series analysis

Funding

  1. European Union Seventh Framework Program (FP7/2007-2013) [257580]

Ask authors/readers for more resources

Industrial systems often encounter abnormal conditions due to various faults or external disturbances which deteriorate the process performance. In such cases, it is essential to detect and eliminate the root cause of the faulty condition as early as possible in order to minimize its adverse effect on the entire process performance. Capturing the process causality plays a key role in identifying the propagation path of faults and their root cause. In recent times, several data-based methods have been developed in order to capture causality from the measured process data. However, each of the methods suffers from several limitations and deficiencies which might compromise their ability to provide an adequate causal model, especially in multivariate (MV) systems. This paper proposes a new methodology for retracing the propagation path of oscillation using a nearest neighbors method by utilizing the information on process connectivity. The two-phase methodology yields a directionality measure based on the type of connectivity in the process using a unique search algorithm. In phase I, the bivariate directionality measure is calculated to include only the interactions that are considered as direct based on the plant topology. In phase II, a new MV directionality measure based on the nearest neighbors method is introduced in order to exclude indirect interactions. The methodology is successfully demonstrated on industrial board machine exhibiting oscillations in its drying section.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available