4.6 Article

A Variable Stiffness Robotic Gripper Based on Structure-Controlled Principle

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASE.2017.2732729

Keywords

Adaptive gripper; robotic gripper; structure-controlled stiffness; variable stiffness finger (VSF)

Funding

  1. Singapore Agency for Science, Technology and Research (A*STAR) Industrial Robotics Program
  2. SERC [122510003]

Ask authors/readers for more resources

This paper presents a novel structure-controlled variable stiffness robotic gripper that enables adaptive gripping of soft and rigid objects with a wide range of compliance. With the structure-controllable principle, the stiffness is controlled by the mechanical structure configurations rather than by material properties or electronic means. The principle is realized by changing the effective second moment of area of the gripper finger through rotating a built-in flexure hinge shaft. Based on this principle, the states of the stiffness can be continuously, instead of discretely, studied and assessed over the intermediate states from compliant to almost completely rigid. A variable stiffness mechanism has been developed to demonstrate the validity of the proposed principle. It enables that the finger stiffness and gripping position are independently controlled. With the introduction of flexure hinges, the undesired lateral buckling resulted from the rotation of a normal leaf spring is eliminated. In addition, a two-finger parallel gripper with this variable stiffness mechanism is developed which can provide the grasping stiffness according to the grasping task requirements. The effectiveness of the gripper has been demonstrated to handle the objects range from light, fragile to heavy, rigid without using any feedback loop or soft pads.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available