4.6 Article

An Online Tool Temperature Monitoring Method Based on Physics-Guided Infrared Image Features and Artificial Neural Network for Dry Cutting

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASE.2018.2826362

Keywords

Artificial neural network (ANN); infrared (IR) imaging; machining; manufacturing; online monitoring; temperature measurements; thermal field reconstruction

Funding

  1. National Natural Science Foundation of China [51505168]
  2. U.S. National Science Foundation [CMMI-1662700]
  3. National Basic Research Program of China (973 Program) [2013CB035803]

Ask authors/readers for more resources

This paper presents an efficient method, which reconstructs the temperature field around the tool/chip interface from infrared (IR) thermal images, for online monitoring the internal peak temperature of the cutting tool. The tool temperature field is divided into two regions; namely, a far field for solving the heat-transfer coefficient between the tool and ambient temperature, and a near field where an artificial neural network (ANN) is trained to account for the unknown heat variations at the frictional contact interface. Methods to extract physics-based feature points from the IR image as ANN inputs are discussed. The effects of image resolution, feature selection, chip occlusion, contact heat variation, and measurement noises on the estimated contact temperature are analyzed numerically and experimentally. The proposed method has been verified by comparing the ANN-estimated surface temperatures against true values experimentally obtained using a high-resolution IR imager on a custom-designed testbed as well as numerically simulated using finite-element analysis. The concept feasibility of the temperature monitoring method is demonstrated on an industrial lathe-turning center with a commercial tool insert.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available