4.7 Article

Efficient and Secure Service-Oriented Authentication Supporting Network Slicing for 5G-Enabled IoT

Journal

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
Volume 36, Issue 3, Pages 644-657

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSAC.2018.2815418

Keywords

5G network; Internet of Things (IoT); anonymous authentication; fog computing; network slicing

Funding

  1. National Natural Science Foundation of China [61728102]

Ask authors/readers for more resources

5G network is considered as a key enabler in meeting continuously increasing demands for the future Internet of Things (IoT) services, including high data rate, numerous devices connection, and low service latency. To satisfy these demands, network slicing and fog computing have been envisioned as the promising solutions in service-oriented 5G architecture. However, security paradigms enabling authentication and confidentiality of 5G communications for IoT services remain elusive, but indispensable. In this paper, we propose an efficient and secure service-oriented authentication framework supporting network slicing and fog computing for 5G-enabled IoT services. Specifically, users can efficiently establish connections with 5G core network and anonymously access IoT services under their delegation through proper network slices of 5G infrastructure selected by fog nodes based on the slice/service types of accessing services. The privacy-preserving slice selection mechanism is introduced to preserve both configured slice types and accessing service types of users. In addition, session keys are negotiated among users, local fogs and IoT servers to guarantee secure access of service data in fog cache and remote servers with low latency. We evaluate the performance of the proposed framework through simulations to demonstrate its efficiency and feasibility under 5G infrastructure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available