4.7 Article

REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION

Journal

ASTROPHYSICAL JOURNAL
Volume 799, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/799/1/69

Keywords

gamma-ray burst: general; gravitational waves; stars: black holes; stars: neutron

Funding

  1. Observatoire de la Cote d'Azur
  2. PACA region

Ask authors/readers for more resources

We use realistic Monte Carlo simulations including both gravitational-wave (GW) and short gamma-ray burst (sGRB) selection effects to revisit the coincident rate of binary systems composed of two neutron stars or a neutron star and a black hole. We show that the fraction of GW triggers that can be observed in coincidence with sGRBs is proportional to the beaming factor at z = 0, but increases with the distance until it reaches 100% at the GW detector horizon distance. When this is taken into account the rate is improved by a factor of three compared to the simple beaming factor correction. We provide an estimate of the performance future GRB detectors should achieve in order to fully exploit the potentiality of the planned third-generation GW antenna Einstein Telescope, and we propose a simple method to constrain the beaming angle of sGRBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available