4.7 Article

Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility

Journal

BIOFABRICATION
Volume 7, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1758-5090/7/1/015009

Keywords

mesenchymal stem cells; myogenic differentiation; graphene oxide (GO); GO-polymer composites; tissue engineering

Funding

  1. Department of Biotechnology, Government of India [DBT/1234/2010-2014]

Ask authors/readers for more resources

Recently graphene and graphene based composites are emerging as better materials to fabricate scaffolds. Addition of graphene oxide (GO) nanoplatelets (GOnPs) in bioactive polymers was found to enhance its conductivity (sigma) and, dielectric permittivity (epsilon) along with biocompatibility. In this paper, human cord blood derived mesenchymal stem cells (CB-hMSCs) were differentiated to skeletal muscle cells (hSkMCs) on spin coated thin GO sheets composed of GOnPs and on electrospun fibrous meshes of GO-PCL (poly-caprolactone) composite. Both substrates exhibited excellent myoblast differentiations and promoted self-alignedmyotubesformation similar to natural orientation. sigma, epsilon, microstructural and vibration spectroscopic studies were carried out for the characterizations of GO sheet and the composite scaffolds. Significantly enhanced values of both s and e of the GO-PCL composite were considered to provide favourable cues for the formation of superior multinucleated myotubes on the electrospun meshes compared to those on thin GO sheets. The present results demonstrated that both substrates might be used as potential candidates for CB-hMSCs differentiation and proliferation for human skeletal muscle tissue regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available