4.8 Article

Bile acids stimulate cholangiocyte fluid secretion by activation of transmembrane member 16A Cl- channels

Journal

HEPATOLOGY
Volume 68, Issue 1, Pages 187-199

Publisher

WILEY
DOI: 10.1002/hep.29804

Keywords

-

Funding

  1. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health [R01DK078587]
  2. Children's Health Foundation
  3. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK078587] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Bile acids stimulate a bicarbonate-rich choleresis, in part, through effects on cholangiocytes. Because Cl- channels in the apical membrane of cholangiocytes provide the driving force for secretion and transmembrane member 16A (TMEM16A) has been identified as the Ca2+-activated Cl- channel in the apical membrane of cholangiocytes, the aim of the present study was to determine whether TMEM16A is the target of bile-acid-stimulated Cl- secretion and to identify the regulatory pathway involved. In these studies of mouse, rat, and human biliary epithelium exposure to ursodeoxycholic acid (UDCA) or tauroursodeoxycholic acid (TUDCA) rapidly increased the rate of exocytosis, ATP release, [Ca2+](i), membrane Cl- permeability, and transepithelial secretion. Bile-acid-stimulated Cl- currents demonstrated biophysical properties consistent with TMEM16A and were inhibited by pharmacological or molecular (small-interfering RNA; siRNA) inhibition of TMEM16A. Bile acid-stimulated Cl- currents were not observed in the presence of apyrase, suramin, or 2-aminoethoxydiphenyl borate (2-APB), demonstrating that current activation requires extracellular ATP, P2Y, and inositol 1,4,5-trisphosphate (IP3) receptors. TUDCA did not activate Cl- currents during pharmacologic inhibition of the apical Na+-dependent bile acid transporter (ASBT), but direct intracellular delivery of TUDCA rapidly activated Cl- currents. Conclusion: Bile acids stimulate Cl- secretion in mouse and human biliary cells through activation of membrane TMEM16A channels in a process regulated by extracellular ATP and [Ca2+](i). These studies suggest that TMEM16A channels may be targets to increase bile flow during cholestasis. (Hepatology 2018;68:187-199).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available