4.8 Article

Supported gold-and silver-based catalysts for the selective aerobic oxidation of 5-(hydroxymethyl)-furfural to 2,5-furandicarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid

Journal

GREEN CHEMISTRY
Volume 20, Issue 15, Pages 3530-3541

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8gc01340c

Keywords

-

Funding

  1. KIT

Ask authors/readers for more resources

The sustainable synthesis of two important intermediates relevant for the production of bio-based polymers, 2,5-furandicarboxylic acid (FDCA) and 5-hydroxymethyl-2-furancarboxylic acid (HFCA), via oxidation of 5-(hydroxymethyl)furfural (HMF) was investigated using supported gold- and silver-based catalysts in water with air as the oxidant. High yields and selectivities for the production of FDCA (89%) and HFCA (>= 98%) were achieved under the optimized reaction conditions with Au/ZrO2 and Ag/ZrO2 catalysts, respectively. While FDCA was mainly formed in the presence of gold catalysts at a maximum productivity of 67 mol(FDCA) h(-1) mol(Au)(-1), silver catalysts showed a remarkably high activity in aldehyde oxidation producing HFCA in almost quantitative yields with a maximum productivity of 400 mol(HFCA) h(-1) mol(Ag)(-1). By variation of the reaction parameters, the Au/ZrO2 catalyst could be tuned to produce also HFCA, whereas the Ag/ZrO2 catalyst exclusively produced HFCA in a wide range of reaction parameters. The observed differences in catalyst selectivities can be taken as a starting point for further mechanistic investigation on the oxidation of HMF, contributing to a fundamental understanding of this reaction which is particularly important for establishing the production of bio-based polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available