4.8 Article

Structural analysis of humins formed in the Bronsted acid catalyzed dehydration of fructose

Journal

GREEN CHEMISTRY
Volume 20, Issue 5, Pages 997-1006

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7gc03054a

Keywords

-

Funding

  1. Catalysis Center for Energy Innovation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004]

Ask authors/readers for more resources

We use infrared (IR) spectroscopy, gel permeation chromatography (GPC), and liquid chromatography-mass spectrometry (LC-MS) in multistage dissolution experiments in various solvents to investigate the solubility and molecular structure of humins formed during fructose dehydration. We demonstrate that the soluble fraction of humins correlates positively with the donor number of solvents resulting in significant dissolution at room temperature in solvents with high donor number. Most of the solubilized humins fragments have relatively low molecular weight (M-w), and the same species are present in different quantities as the residual solid is repeatedly dissolved in the same solvent. In contrast to the common belief of humins consisting of polymers of large Mw, we postulate for the first time that they are spatially and chemically heterogeneous and consist of insoluble macromolecules and small soluble species that are weakly associated within the structure. The solubility profiles of dissolved species in acetonitrile and methanol are different in terms of Mw but possess similar IR spectra, indicative of similar functional groups in dissolved species. Furthermore, we hypothesize that the identified humins fragments form through aldol condensation between 5-hydroxymethylfurfural and its hydrated products and through condensation of furanic species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available