4.8 Article

The isohydric trap: A proposed feedback between water shortage, stomatal regulation, and nutrient acquisition drives differential growth and survival of European pines under climatic dryness

Journal

GLOBAL CHANGE BIOLOGY
Volume 24, Issue 9, Pages 4069-4083

Publisher

WILEY
DOI: 10.1111/gcb.14311

Keywords

climatic change; hotter drought; nutrients; stable isotopes; stoichiometry; stomatal behaviour; water use efficiency

Funding

  1. project ECOLPIN [AGL2011-24296]
  2. network REMEDINAL 3 of the CAM [S2013/MAE-2719]
  3. FPU [FPU13/03410]
  4. Juan de la Cierva from the Spanish Ministries of Education, Culture and Sport, and Economy, Industry and Competitiveness [FPDI-2013-15867]
  5. IES Abroad
  6. [CGL2013-48753-R]

Ask authors/readers for more resources

sition (C-13, O-18), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2years, the Mediterranean species Pinus h Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration-driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an isohydric trap, a dryness-induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P.nigra, P.sylvestris, and P.uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic compoalepensis showed lower O-18 and higher C-13 values than the other species, indicating higher time-integrated transpiration and water-use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf O-18 and lower C-13, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available