4.6 Article

Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China

Journal

GLOBAL AND PLANETARY CHANGE
Volume 167, Issue -, Pages 24-34

Publisher

ELSEVIER
DOI: 10.1016/j.gloplacha.2018.05.007

Keywords

Land surface temperature (LST); Land use change; Future scenarios; CA-Markov; Projection of LST; Taihu Lake Basin

Funding

  1. National Natural Science Foundation of China [41771414]

Ask authors/readers for more resources

Land surface temperature (LST) is an important environmental parameter that is significantly affected by land use and landscape composition. Despite the recent progress in LST retrieval algorithms and better knowledge of the relationship between LST and land coverage indices, predictive studies of future LST patterns are limited. Here, we project LST patterns in the Taihu Lake Basin to the year 2026 based on projected land use pattern and simulated land coverage indices that include normalized difference built-up index (NDBI), normalized difference vegetation index (NDVI) and normalized difference water index (NDWI). We derived the spatiotemporal LST patterns in the Taihu Lake Basin from 1996 to 2026 using thermal infrared data from Landsat imagery. A CA-Markov model was applied to project the 2026 land use pattern in the basin based on spatial driving factors, using the 2004 land use as the initial state. We simulated the NDBI, NDVI and NDWI indices for 2026 using the projected land use patterns, and then generated the 2026 LST in the study area. Our results showed that LST has been increasing and the warming areas have been expanding since 1996, especially in the Su-Xi-Chang urban agglomeration. The mean LST in Su-Xi-Chang has increased from < 30 degrees C in 1996 to > 31 degrees C in 2004 and has risen to about 33 degrees C in 2016, and the projection suggests that LST will reach about 35 degrees C in 2026. Our results also suggest that mean LST increased by 2 degrees C per decade in this highly urbanized area between 1996 and 2026. We present a preliminary method to produce future LST patterns and provide reasonable LST scenarios in the Taihu Lake Basin, which should help develop and implement management strategies for mitigating the effects of urban heat island.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available