4.6 Article

Stress-controlled direct shear testing of geosynthetic clay liners I: Apparatus development

Journal

GEOTEXTILES AND GEOMEMBRANES
Volume 46, Issue 5, Pages 656-666

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.geotexmem.2018.06.003

Keywords

Geosynthetics; Direct shear; Geosynthetic clay liner; Mining; Shear strength

Funding

  1. Colorado State University
  2. Minerals Technology, Inc.
  3. Geosynthetic Research Institute (GRI)

Ask authors/readers for more resources

The use of geosynthetic clay liners (GCLs) in waste containment applications can induce long-term normal and shear stresses as well as expose GCLs to elevated temperatures and non-standard hydration solutions. Considering the importance of GCL internal shear strength to the design and integrity of waste containment barrier systems, innovative laboratory testing methods are needed to assess shear behavior of GCLs. There were two main objectives of this study: (i) develop a stress-controlled direct shear apparatus capable of testing GCLs exposed to elevated temperatures and hydrated in non-standard solutions; and (ii) assess internal shear behavior of GCLs under varying experimental conditions (e.g., stress, temperature, solution). These two objectives were partitioned into a two-paper set, whereby Part I (this paper) focuses on the shear box design and Part II focuses on an assessment of shear behavior. The direct shear apparatus includes a reaction frame to mitigate specimen rotation that develops from an internal moment within needle-punched reinforced GCLs. Rapid-loading shear tests were conducted to assess functionality of the apparatus and document baseline shear behavior for a heat treated and a non-heat treated needle-punched GCL with comparable peel strength. These two GCLs failed at comparable applied shear stress; however, the heat-treated GCL yielded lower shear deformation and failure occurred via rupture of reinforcement fiber anchors, whereas the non-heat treated GCL yielded larger shear deformation and failure via pullout of reinforcement fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available