4.6 Article

Unsupervised seismic facies analysis via deep convolutional autoencoders

Journal

GEOPHYSICS
Volume 83, Issue 3, Pages A39-A43

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2017-0524.1

Keywords

-

Funding

  1. Natural Science Foundation of China [U1562218, 41604107]
  2. Fundamental Research Funds for the Central Universities [ZYGX2016J219]

Ask authors/readers for more resources

One of the most important goals of seismic stratigraphy studies is to interpret the elements of the seismic facies with respect to the geologic environment. Prestack seismic data carry rich information that can help us get higher resolution and more accurate facies maps. Therefore, it is promising to use prestack seismic data for the seismic facies recognition task. However, because each identified object changes from the poststack trace vectors to a prestack trace matrix, effective feature extraction becomes more challenging. We have developed a novel data-driven offset-temporal feature extraction approach using the deep convolutional autoencoder (DCAE). As an unsupervised deep learning method, DCAE learns nonlinear, discriminant, and invariant features from unlabeled data. Then, seismic facies analysis can be accomplished through the use of conventional classification or clustering techniques (e.g., K-means or self-organizing maps). Using a physical model and field prestack seismic surveys, we comprehensively determine the effectiveness of our scheme. Our results indicate that DCAE provides a much higher resolution than the conventional methods and offers the potential to significantly highlight stratigraphic and depositional information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available