4.7 Article

Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: Evidence from sequential fractionation, P K-edge XANES, and 31P NMR spectroscopy

Journal

GEODERMA
Volume 316, Issue -, Pages 115-126

Publisher

ELSEVIER
DOI: 10.1016/j.geoderma.2017.12.003

Keywords

Triple superphosphate TSP; Organic fertilizer; Topsoil; Subsoil; NEXAFS

Categories

Funding

  1. German Federal Ministry of Education and Research (BMBF) [031A558]
  2. Canada Foundation for Innovation
  3. Natural Sciences and Engineering Research Council of Canada
  4. National Research Council Canada
  5. Canadian Institutes of Health Research
  6. Government of Saskatchewan
  7. Western Economic Diversification Canada
  8. University of Saskatchewan

Ask authors/readers for more resources

Agricultural productivity depends on the use of phosphorus (P) of which not only the topsoil, but also the subsoil, can hold immense stocks. To assess their importance for plant nutrition, we compared the P status of Stagnic Cambisol profiles in experimental plots that received different P fertilizer applications for 16 years. Sequential fractionation was combined with P K-edge X-ray absorption near edge structure (XANES) spectroscopy and liquid P-31 nuclear magnetic resonance (NMR) spectroscopy to identify the chemical P speciation. Fertilized topsoils showed P stocks larger by a factor of 1.2 to 1.4, and subsoil stocks larger by a factor of 1.3 to 1.5 than the control. P-XANES revealed the predominance of mainly inorganic P species, such as moderately labile Fe- (46 to 92%), Al- (0 to 40%) and Ca- (0 to 21%) P compounds besides organic P (0 to 12%). This was supported by 31P NMR with decreasing proportions of orthophosphate monoesters from topsoil (20 to 28%) towards the second subsoil layer (7 to 13%). In summary, fertilizer application maintained or increased P stocks but only slightly altered the P speciation throughout the profiles. The kind of fertilizers had no significant effect on soil P, only affecting the inorganic P pools. Our findings proved that subsoil P stocks are potentially important contributors to plant nutrition, but their accessibility must be assessed for improved soil P tests and reduced fertilizer recommendations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available