4.4 Article

Evaluation of Immobilization Techniques for the Fabrication of Nanomaterial-Based Amperometric Glucose Biosensors

Journal

ANALYTICAL LETTERS
Volume 48, Issue 8, Pages 1297-1310

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00032719.2014.979364

Keywords

Nanoparticles; Glucose biosensor; Layer-by-layer; Cross-linking; Electropolymerization

Funding

  1. Bulgarian Ministry of Education
  2. National Science Fund [DNTS-01/09]

Ask authors/readers for more resources

Eleven glucose biosensors were prepared by cross-linking, entrapment, and layer-by-layer assembly to investigate the influence of these immobilization methods on performance. The effects of separate nanozeolites combined with magnetic nanoparticles and multiwalled carbon nanotubes in the enzyme composition on the performance of glucose biosensors were compared. Cyclic voltammetric studies were carried out on the biosensors. Acrylonitrile copolymer/nanozeolite/carbon nanotube and acrylonitrile copolymer/nanozeolite/magnetic nanoparticle electrodes prepared by a cross-linking method showed the highest electroactivity. These results indicated that a synergistic effect occurred when multiwalled carbon nanotubes, magnetic nanoparticles, and nanozeolites were combined that greatly improved the electron transfer ability of the sensors. Amperometric measurements by the glucose oxidase electrodes were obtained that showed that the acrylonitrile copolymer/nanozeolite/carbon nanotube electrode was the most sensitive (10.959 microamperes per millimolar). The lowest detection limit for this biosensor was 0.02 millimolar glucose, with a linear dynamic range up to 3 millimolar. The response after thirty days was 81 percent of the initial current.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available