4.5 Article

Concerted anatomical change associated with crassulacean acid metabolism in the Bromeliaceae

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 45, Issue 7, Pages 681-695

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP17071

Keywords

functional anatomy; succulence; vascular epiphytes; xerophytism

Categories

Funding

  1. Natural Environment Research Council [1359020]
  2. Marie Selby Botanical Gardens (MSBG)

Ask authors/readers for more resources

Crassulacean acid metabolism (CAM) is a celebrated example of convergent evolution in plant ecophysiology. However, many unanswered questions surround the relationships among CAM, anatomy and morphology during evolutionary transitions in photosynthetic pathway. An excellent group in which to explore these issues is the Bromeliaceae, a diverse monocot family from the Neotropics in which CAM has evolved multiple times. Progress in the resolution of phylogenetic relationships among the bromeliads is opening new and exciting opportunities to investigate how evolutionary changes in leaf structure has tracked, or perhaps preceded, photosynthetic innovation. This paper presents an analysis of variation in leaf anatomical parameters across 163 C-3 and CAM bromeliad species, demonstrating a clear divergence in the fundamental aspects of leaf structure in association with the photosynthetic pathway. Most strikingly, the mean volume of chlorenchyma cells of CAM species is 22 times higher than that of C-3 species. In two bromeliad subfamilies (Pitcaimioideae and Tillandsioideae), independent transitions from C-3 to CAM are associated with increased cell succulence, whereas evolutionary trends in tissue thickness and leaf air space content differ between CAM origins. Overall, leaf anatomy is clearly and strongly coupled with the photosynthetic pathway in the Bromeliaceae, where the independent origins of CAM have involved significant anatomical restructuring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available