4.7 Article

Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale

Journal

FUEL
Volume 219, Issue -, Pages 296-311

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2018.01.126

Keywords

Bakken Shale; Gas adsorption; Multifractal analysis; Heterogeneity

Funding

  1. China Scholarship Council [201406450029]

Ask authors/readers for more resources

Understanding pore heterogeneity can enable us to obtain a deeper insight into the flow and transport processes in any porous medium. In this study, multifractal analysis was employed to analyze gas adsorption isotherms (CO2 and N-2) for pore structure characterization in both a source (Upper-Lower Bakken) and a reservoir rock (Middle Bakken). For this purpose, detected micropores from CO2 adsorption isotherms and meso-macropores from N-2 adsorption isotherms were analyzed separately. The results showed that the generalized dimensions derived from CO2 and the N-2 adsorption isotherms decrease as q increases, demonstrating a multifractal behavior followed by f(alpha) curves of all pores exhibiting a very strong asymmetry shape. Samples from the Middle Bakken demonstrated the smallest average H value and largest average alpha(10-)-alpha(10+) for micropores while samples from the Upper Bakken depicted the highest average alpha(10-)-alpha(10+) for the meso-macropores. This indicated that the Middle Bakken and the Upper Bakken have the largest micropore and meso-macropore heterogeneity, respectively. The impact of rock composition on pore structures showed that organic matter could increase the micropore connectivity and reduce micropore heterogeneity. Also, organic matter will reduce meso-macropore connectivity and increase meso-macropore heterogeneity. We were not able to establish a robust relationship between maturity and pore heterogeneity of the source rock samples from the Bakken.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available