4.6 Article

DYNAMICAL EVOLUTION OF MULTI-RESONANT SYSTEMS: THE CASE OF GJ 876

Journal

ASTRONOMICAL JOURNAL
Volume 149, Issue 5, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-6256/149/5/167

Keywords

celestial mechanics; planet-disk interactions; planets and satellites: dynamical evolution and stability

Ask authors/readers for more resources

The GJ 876 system was among the earliest multi-planetary detections outside of the Solar System, and has long been known to harbor a resonant pair of giant planets. Subsequent characterization of the system revealed the presence of an additional Neptune mass object on an external orbit, locked in a three body Laplace mean motion resonance with the previously known planets. While this system is currently the only known extrasolar example of a Laplace resonance, it differs from the Galilean satellites in that the orbital motion of the planets is known to be chaotic. In this work, we present a simple perturbative model that illuminates the origins of stochasticity inherent to this system and derive analytic estimates of the Lyapunov time as well as the chaotic diffusion coefficient. We then address the formation of the multi-resonant structure within a protoplanetary disk and show that modest turbulent forcing in addition to dissipative effects is required to reproduce the observed chaotic configuration. Accordingly, this work places important constraints on the typical formation environments of planetary systems and informs the attributes of representative orbital architectures that arise from extended disk-driven evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available