4.7 Article

FRAGMENTATION OF MOLECULAR CLUMPS AND FORMATION OF A PROTOCLUSTER

Journal

ASTROPHYSICAL JOURNAL
Volume 804, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/804/2/141

Keywords

ISM: clouds; ISM: individual objects (IRDC G28.34+0.06); ISM: jets and outflows; ISM: kinematics and dynamics; stars: formation

Funding

  1. National Science Foundation of China [11328301]
  2. ESO fellowship
  3. Smithsonian Predoctoral Fellowship
  4. People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7) Uunder REA [PIIF-GA-2011-301538]
  5. NASA

Ask authors/readers for more resources

Sufficiently massive clumps of molecular gas collapse under self-gravity and fragment to spawn a cluster of stars that have a range of masses. We investigate observationally the early stages of formation of a stellar cluster in a massive filamentary infrared dark cloud, G28.34+0.06 P1, in the 1.3 mm continuum and spectral line emission using the Atacama Large Millimeter/Submillimeter Array. Sensitive continuum data reveal further fragmentation in five dusty cores at a resolution of several 10(3) AU. Spectral line emission from (CO)-O-18, CH3OH, (CS)-C-13, H2CO, and N2D+ is detected for the first time toward these dense cores. We found that three cores are chemically more evolved as compared with the other two; interestingly, though, all of them are associated with collimated outflows as suggested by evidence from the CO, SiO, CH3OH, H2CO, and SO emission. The parsec-scale kinematics in NH3 exhibit velocity gradients along the filament, consistent with accretion flows toward the clumps and cores. The moderate luminosity and the chemical signatures indicate that the five cores harbor low-to intermediate-mass protostars that likely become massive ones at the end of the accretion. Despite the fact that the mass limit reached by the 1 sigma dust continuum sensitivity is 30 times lower than the thermal Jeans mass, there is a lack of a distributed low-mass protostellar population in the clump. Our observations indicate that in a protocluster, low-mass stars form at a later stage after the birth of more massive protostars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available