4.7 Article

Retinoic acid signaling is essential for maintenance of the blood-retinal barrier

Journal

FASEB JOURNAL
Volume 32, Issue 10, Pages 5674-5684

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.201701469R

Keywords

zebrafish; tight junctions; vasculature

Funding

  1. U.S. National Institutes of Health, National Eye Institute [EY016490, EY015638, EY026181, T32EY024236, P30EY025585]
  2. Research to Prevent Blindness Unrestricted/Challenge Grant
  3. Foundation Fighting Blindness Center Grant

Ask authors/readers for more resources

The predominant function of the blood-retinal barrier (BRB) is to maintain retinal homeostasis by regulating the influx and efflux between the blood and retina. Breakdown of the BRB occurs in a number of ocular diseases that result in vision loss. Understanding the molecular and cellular pathways involved in the development and maintenance of the BRB is critical to developing therapeutics for these conditions. To visualize the BRB in vivo, we used the transgenic Tg(l-fabp:DBP-EGFP:flk1:mCherry) zebrafish model that expresses vitamin D binding protein (a member of the albumin gene family) tagged to green fluorescent protein. Retinoic acid (RA) plays a number of important roles in vertebrate development and has been shown to play a protective role during inflammation-induced blood-brain barrier disruption. The role of RA in BRB development and maintenance remains unknown. To disrupt RA signaling, Tg(l-fabp:DBP-EGFP:flk1:mCherry) zebrafish were treated with N,N-diethylaminobenzaldehyde and 4-[(1E)-2-[5,6-dihydro-5,5-dimethyl-8-(2-phenylethynyl)-2-naphthalenyl]ethenyl]benzoic acid, which are antagonists of retinal dehydrogenase and the RA receptor, respectively. Treatment with either compound resulted in BRB disruption and reduced visual acuity, whereas cotreatment with all-trans RA effectively rescued BRB integrity. Additionally, transgenic overexpression of Cyp26a1, which catalyzes RA degradation, resulted in breakdown of the BRB. Our results demonstrate that RA signaling is critical for maintenance of the BRB and could play a role in diseases such as diabetic macular edema.Pollock, L. M., Xie, J., Bell, B. A., Anand-Apte, B. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available