4.7 Article

ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 99, Issue -, Pages 56-70

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2018.01.019

Keywords

Sine cosine algorithm (SCA); Particle swarm optimization (PSO); Meta-heuristics algorithms; Pairwise local alignment; Longest consecutive substrings; Smith-Waterman alignment algorithm

Ask authors/readers for more resources

The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based on the use of sine and cosine trigonometric functions as operators to update the movements of the search agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting such parameters is challenging because they permit the algorithm to escape from local optima and avoid premature convergence. The main drawback of the SCA is that the parameter setting only affects the exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO exploits the search space better than the operators of the standard SCA. The proposed algorithm, called ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local alignment algorithm that tends to find the longest consecutive substrings between two biological sequences. Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of accuracy and computational time. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available