4.5 Article

Signatures of hybridization and speciation in genomic patterns of ancestry

Journal

EVOLUTION
Volume 72, Issue 8, Pages 1540-1552

Publisher

WILEY
DOI: 10.1111/evo.13509

Keywords

Ancestry; hybrid incompatibility; hybrid zone; reproductive isolation

Funding

  1. NSF [DEB 1353737, DEB 1406254]
  2. NIH [R01 GM120051]
  3. UW-Madison
  4. Advanced Computing Initiative
  5. Wisconsin Alumni Research Foundation
  6. Wisconsin Institutes for Discovery
  7. National Science Foundation
  8. U.S. Department of Energy's Office of Science
  9. Direct For Biological Sciences
  10. Division Of Environmental Biology [1353737] Funding Source: National Science Foundation

Ask authors/readers for more resources

Genomes sampled from hybrid zones between nascent species provide important clues into the speciation process. With advances in genome sequencing and single nucleotide polymorphism (SNP) genotyping, it is now feasible to measure variation in gene flow with high genomic resolution. This progress motivates the development of conceptual and analytical frameworks for hybrid zones that complement well-established dine approaches. We extend the perspective that genomic distributions of ancestry are sensitive indicators of hybridization history. We use simulations to examine the behavior of the number of ancestry junctions-a simple summary of genomic patterns-in hybrid zones under increasingly realistic scenarios. Neutral simulations revealed that ancestry junction number is shaped by population structure, migration rate, and population size. Modeling multiple genetic architectures of hybrid dysfunction, with an emphasis on epistitic hybrid incompatibilities, showed that selection reduces junction number near loci that confer reproductive barriers. The magnitude of this signature was affected by the form of selection, dominance, and genomic location (autosome vs. sex chromosome) of incompatible loci. Our results suggest that researchers can identify loci involved in reproductive isolation by scanning hybrid genomes for local reductions in junction number. We outline necessary directions for future theory and method development to realize this goal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available