4.7 Article

WAVE DAMPING OBSERVED IN UPWARDLY PROPAGATING SAUSAGE-MODE OSCILLATIONS CONTAINED WITHIN A MAGNETIC PORE

Journal

ASTROPHYSICAL JOURNAL
Volume 806, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/806/1/132

Keywords

magnetohydrodynamics (MHD); Sun: chromosphere; Sun: oscillations; Sun: photosphere

Funding

  1. Northern Ireland Department for Employment and Learning
  2. UK Science and Technology Facilities Council
  3. Odysseus programme of the FWO-Vlaanderen
  4. CSUN Department of Physics and Astronomy
  5. Science and Technology Facilities Council (STFC), UK
  6. STFC [ST/M000826/1, ST/K004220/1, ST/J001430/1] Funding Source: UKRI
  7. Science and Technology Facilities Council [ST/K004220/1, ST/J001430/1, ST/M000826/1] Funding Source: researchfish

Ask authors/readers for more resources

We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period similar to 290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out of phase with one another, displaying phase angles of 6 degrees.12, 5 degrees.82, and 15 degrees.97 between the 410 angstrom continuum-G-band, G-band-Na I D1, and Na I D-1-Ca II K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of similar to 0 degrees between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the slow regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 W m(-2). The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available