3.8 Proceedings Paper

On two subgroups of U(n), useful for quantum computing

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1742-6596/597/1/012030

Keywords

-

Ask authors/readers for more resources

As two basic building blocks for any quantum circuit, we consider the 1-qubit PHASOR circuit Phi(theta) and the 1-qubit NEGATOR circuit N(theta). Both are roots of the IDENTITY circuit. Indeed: both (NO) and N(0) equal the 2 x 2 unit matrix. Additionally, the NEGATOR is a root of the classical NOT gate. Quantum circuits (acting on w qubits) consisting of controlled PHASORs are represented by matrices from ZU(2(w)); quantum circuits consisting of controlled NEGATORs are represented by matrices from XU(2(w)). Here, ZU(n) and XU(n) are subgroups of the unitary group U(n): the group XU(n) consists of all n x n unitary matrices with all 2n line sums (i.e. all n row sums and all n column sums) equal to 1 and the group ZU(n) consists of all n x n unitary diagonal matrices with first entry equal to 1. Any U(n) matrix can be decomposed into four parts: U = exp(i alpha) Z(1)XZ(2), where both Z(1) and Z(2) are ZU(n) matrices and X is an XU(n) matrix. We give an algorithm to find the decomposition. For n = 2(w) it leads to a four-block synthesis of an arbitrary quantum computer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available