4.5 Article

Neuropeptide S in the basolateral amygdala mediates an adaptive behavioral stress response in a rat model of posttraumatic stress disorder by increasing the expression of BDNF and the neuropeptide YY1 receptor

Journal

EUROPEAN NEUROPSYCHOPHARMACOLOGY
Volume 28, Issue 1, Pages 159-170

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.euroneuro.2017.11.006

Keywords

Animal model; Post-traumatic Stress Disorder (PTSD); Neuropeptide S; Neuropeptide Y; Neuropeptide Y-Y1 receptor; Resilience; Vulnerability; Brain-derived neurotrophic factor

Funding

  1. Israel Academy of Science and Humanities [416/09]
  2. Swedish Medical Research Council [10414]

Ask authors/readers for more resources

Neuropeptide S (NPS) is a regulatory peptide that has anxiolytic and arousal-promoting effects in rodents. We used an animal model of posttraumatic stress disorder (PTSD) to assess long-term behavioral effects of a single dose of NPS, microinjected into the basolateral amygdala (BLA) 1 h following exposure to predator-scent stress (PSS). To elucidate the molecular mechanism by which NPS attenuates behavioral stress responses, expression levels of neuropeptide Y (NPY), NPY-Y1 receptor (NPY-Y1R), and brain-derived neurotrophic factor (BDNF) were evaluated in the hippocampus. The behavioral and molecular effects of NPS receptor antagonist (NPS-RA), NPY-Y1 R antagonist (NPY-Y1RA), or both administered centrally were evaluated in the same manner. Circulating corticosterone levels were measured at different time points following PSSexposure. Immediate post-exposure treatment with NPS had a marked protective effect; BLA microinfusion of NPS completely abolished the extreme behavioral response to PSS, restored the decreased expression of BDNF and, unexpectedly, PY-Y1R, but didn't affect the decreased expression of NPY. BLA microinfusion of both NPY-Y1 RA and NPS-RA together had an additive effect, which completely prevented the anxiolytic effects of NPS in rats exposed to PSS and disrupted the expression of NPY-Y1R in the hippocampus following NPS infusion. It may therefore be hypothesized that NPS acts, directly or indirectly, on both the NPY-Y1R and NPS receptors and that the cross-talk between NPS and NPY-Y1R may be necessary for the anxiolytic effects of NPS post-exposure. The NPS system might thus contribute to a potential endogenous mechanism underlying the shift towards adaptive behavioral response and thereby might be relevant as a pharmacological target for attenuating stress-related sequelae. (C) 2017 Elsevier B.V. and ECNP. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available