4.7 Article

Nitrogen saturation in humid tropical forests after 6years of nitrogen and phosphorus addition: hypothesis testing

Journal

FUNCTIONAL ECOLOGY
Volume 30, Issue 2, Pages 305-313

Publisher

WILEY
DOI: 10.1111/1365-2435.12475

Keywords

China; N2O emission; nitrogen deposition; nitrogen mineralization and nitrification; nitrogen saturation; phosphorus addition; tropical forest

Categories

Funding

  1. National Key Basic Research 973 Program [2011CB403204]

Ask authors/readers for more resources

Nitrogen (N) saturation hypothesis suggests that when an ecosystem reaches N-saturation, continued N input will cause increased N leaching, nitrous oxide (N2O) emission, and N mineralization and nitrification rates. It also suggests that a different element will become the main limiting factor when N saturation has been reached. Although this hypothesis has been tested in temperate forests, whether they can be directly applied to N-saturated tropical forests remain poorly addressed. To test this hypothesis, soil inorganic N, soil N mineralization and nitrification rate, soil N2O emission rate and nitrate () leaching rate were measured in an N-saturated old-growth tropical forest in southern China, after 6years of N and P addition. We hypothesized that N addition would stimulate further N saturation, but P addition might alleviate N saturation. As expected, our results showed that six continuous years of experimental N addition did cause further N saturation, which was indicated by significant increases in soil inorganic N concentration, N2O emission and nitrate () leaching. However, in contrast to our expectations, N addition significantly decreased insitu rates of net N mineralization and nitrification, which could be related to associated changes in enzyme activity and microbial community composition. On the other hand, P addition mitigated N saturation, as expected. Soil inorganic N concentration, N2O emission and leaching decreased significantly after P addition, but the net rates of N mineralization and nitrification were significantly increased. Our results provide a new understanding of the N saturation hypothesis, suggesting that the effects of long-term N deposition on net N mineralization and nitrification rates in N-saturated tropical forests can be negative and that P addition can alleviate N saturation in such tropical systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available