4.7 Article

Minimizing the number of workers in a paced mixed-model assembly line

Journal

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Volume 272, Issue 1, Pages 188-194

Publisher

ELSEVIER
DOI: 10.1016/j.ejor.2018.05.072

Keywords

Combinatorial optimization; Workforce assignment; Production line; Computational complexity; Algorithms

Ask authors/readers for more resources

We study a problem of minimizing the maximum number of identical workers over all cycles of a paced assembly line comprised of m stations and executing n parts of k types. There are lower and upper bounds on the workforce requirements and the cycle time constraints. We show that this problem is equivalent to the same problem without the cycle time constraints and with fixed workforce requirements. We prove that the problem is NP-hard in the strong sense if m = 4 and the workforce requirements are station independent, and present an Integer Linear Programming model, an enumeration algorithm and a dynamic programming algorithm. Polynomial in k and polynomial in n algorithms for special cases with two part types or two stations are also given. Relations to the Bottleneck Traveling Salesman Problem and its generalizations are discussed. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available