4.3 Article

Enhancing the Bioaccessibility of Phytosterols Using Nanoporous Corn and Wheat Starch Bioaerogels

Journal

Publisher

WILEY
DOI: 10.1002/ejlt.201700229

Keywords

aerogels; bioaccessibility; nanoparticles; phytosterols; starch; supercritical

Funding

  1. United States Department of Agriculture, National Institute of Food and Agriculture (USDA NIFA)
  2. ARD Innovation Fund for Wheat/Cereal Crops
  3. Wheat/Cereal Scholarship & Fellowship Support Fund
  4. University of Nebraska Collaboration Initiative Seed Grant

Ask authors/readers for more resources

Bioavailability of phytosterols is very low due to their crystalline structure and poor water solubility, limiting their potential health benefits. In this study, a novel approach to forming low crystallinity phytosterol nanoparticles is developed using nanoporous starch aerogels, namely wheat starch aerogels (WSAs) and corn starch aerogels (CSA), in combination with supercritical carbon dioxide (SC-CO2) to improve the bioaccessibility and in turn bioavailability of phytosterols. Starch aerogels with outstanding properties (WSA with a surface area of 62 m(2) g(-1) and pore size of 19 nm; CSA with a surface area of 221 m(2) g(-1) and pore size of 7 nm) were used as a mold to form phytosterol nanoparticles. The highest phytosterol impregnation capacity is obtained with CSA monolith (195 mg phytosterols/g CSA). Impregnation into powder or monolithic forms of the aerogels resulted in different phytosterol morphology where the monolithic form prevented formation of large plate-like phytosterol crystals. Impregnation into WSA monolith (WSA-M) generated low crystallinity phytosterol nanoparticles (70 nm). Bioaccessibility of the phytosterols increased by 20-fold when impregnated into WSA-M. The hydrolysis of CSA (30-39%) was lower than that of WSA (55-59%) during simulated digestion, which negatively affected the release of phytosterols. Practical applications: Practical applications include: i) a novel process that can decrease the size and crystallinity of phytosterols and thus improve their bioavailability; ii) a blueprint to apply to other water insoluble food bioactives; and iii) the transfer of green technology to food manufacturers. Longer-term, this novel approach will (i) improve the health benefits of water-insoluble bioactives; ii) enable food manufacturers to add water-insoluble bioactives into low- and high-fat foods to produce health-promoting foods; iii) improve public health through diet; iv) enhance the cost-benefit ratio of water insoluble bioactives; v) avert toxic chemicals and environmental pollution; and vi) lower the costs of handling, storage, and transportation of bioactives. Bioavailability of phytosterols is very low due to their crystalline structure and poor water solubility, limiting their potential health benefits. Our novel approach to forming first-of-its-kind low-crystallinity phytosterol nanoparticles are developed using nanoporous starch aerogels in combination with supercritical carbon dioxide to improve the bioaccessibility and in turn bioavailability of phytosterols. The novel low-crystallinity phytosterol nanoparticles are 20-folds more bioaccessible compared to the crude phytosterols after simulated digestion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available